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Abstract For time-dependent two-state quantum systems, the transition probability is expo- 
nentially small in the adiabatic parameter &, with the exponent determined by a transition 
paint I, in the complex time plane. Here we study the &-independent prefactors associated 
with different sorts of transition point (which need not correspond to complex degeneracies 
of the adiabatic energy). Unlike previous approaches the method we use does not make use 
of special functions. It consists of applying first-order perturbation theory to the Schredinger 
equation obtained by transforming to a series of ‘superadiabatic’ bases clinging ever more 
closely to the evolving state. If the original matrix elements share a leading singularity 
(r-tJ’, and their fractional deviation from this is ( r - r J .  the prefactor is 

4sk’{ iis j. 
2(2r+s+2)  

This iS universal in the sense of being invariant under time reparametrization and quantum 
changes of frame. 

1. Introduction 

In the simplest model for quantum transitions. a system with two states evolves under 
a time-dependent Hamiltonian operator H(t) .  This has many physical applica1:ions (see 
e.g. Garraway et aI1993). It is well known (see e.g. Davis and Pechukas 1976) that for 
Hamiltonians which are analytic on the real time axis the probability for a transition 
after infinite time from one of the instantaneous eigenstates to the other is exponentially 
small in the adiabatic parameter E describing the speed with which H(t )  varies. The 
exponent involves 

w, = 2 dt E(t) 

where E(t) is the instantaneous energy, defined as tlie eigenvalue of H(t)  which is 
positive for real f (we assume E(t) has no real zeros), and t, is a point in the complex 
plane where the adiabatic transition can be considered to originate. Therefore these 
transitions describe real physics in the complex plane. In the most familiar case. the 
transition point t, is a simple zero of E2(t) ,  and (when H ( t )  is real symmetric) the E- 

independent prefactor multiplying the exponential is unity. 
Here we are concerned with the different prefactors that can occur when the transi- 

tion point is not a simple zero of E’(t). Demkov et a1 (1978) calculated a class of such 
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prefactors, in which t ,  is a higher-order zero, and Joye (1993) has provided a rigorous 
treatment that also covers more general sorts of transition point. Earlier, Pokrovskii 
and Khalatnikov (1961) found the prefactors for the analogous problem of above- 
barrier reflection in the semiclassical approximation. All these authors use a compari- 
son-equation technique, in which H(t) is approximated near to and the resulting approxi- 
mate Schrodinger equation solved exactly in terms of hypergeometric functions. 

We have two reasons for presenting another calculation of these prefactors: first, to 
emphasize their wide universality class and, second, because of the independent interest 
of the method we use. This is fist-order perturbation theory, applied not to states in 
the usual adiabatic basis (which is b o w n  to give the wrong prefactor) but to a sequence 
of ‘superadiabatic’ bases that cling ever more closely to the evolving state; the corre- 
sponding sequence of prefactors renormalises onto the correct value. No knowledge of 
special functions is required in this method, which can therefore be regarded as elemen- 
tary. It was introduced by Berry (1990a) and applied to obtain the prefactor of unity 
for simple transition points, in a paper whose main purpose was to study the history 
of the transition, that is the growth of the probability amplitude from zero to its 
exponentially small h a 1  value (see also Berry 1990b and Lim and Berry 1991). 

Confusion should be avoided between the prefactors we study here and the recently- 
discovered ‘geometric amplitudes’ (Berry 199Oc, Joye et al1991, Zwanziger et a1 1991). 
Geometric amplitudes are also independent of E, but arise from spinor rotations associ- 
ated with the complex Hermitian nature of H(t) ,  rather than from more complicated 
transition points. 
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2. Preliminaries 

We seek approximate solutions of the Schrodinger equation 

i&t) = ~ ( t ) ~ ( t )  (2) 

in the adiabatic l i t  of small E. Here the dot denotes differentiation with respect to 
time, and 

We assume that e(t) is asymptotically constant as t-tfco. The adiabatic states (propor- 
tional to instantaneous eigenstates of H(t ) )  are 

where (4) 



Transition prefactors 4739 

Using these as a basis, we write the exact solutions of (2)  as 

Y( t) = c+(t) w+( t) + c-( t)Y-( t). 

c+(-m)=1 c-(-m) =o 

P = 1 c-(+m)l*. 

As initial state we choose 

so that the desired transition probability is 

( 5 )  

It is easy to see that the conventional view, in which adiabatic transitions originate 
in complex zeros of E(t), misses the essence of the problem. For all zeros can be 
eliminated by the transfonnation 

t+w where (8) 

because this converts (2) into 

(where primes denote differentiation with respect to w), in which the instantaneous 
energy is constant. (The transformation t+w is not invertible at zeros of E(t) ,  but the 
branch can be determined by analytic continuation from the real axis.) We will obtain 
a formula for P which is invariant under all time reparameterizations, not just the 
choice (8).  Two particular Hamiltonians for which Eis  constant, and whose prefactors 
we will study in section 5, are HA and HE, defined by 

t 
Z A ( f )  =- 

1 
Ji?T' XA(r)=- f l  

XE(t)=sech(fnt) zB(t)=tanh(ist). 

HA was also studied by Suominen et ~l (1991); HE was introduced by Demkov and 
Kunike (1969) (see also Suominen and Garraway 1992). 

The true origin of adiabatic transitions is revealed by the further transformltiou to 
the adiabatic basis (5). The evolution law for the amplitudes c* (now regarded as 
functions of w) is 

c;(w)=*SW(w)exp + I -  c7(w). (11) { 3 
What causes adiabatic transitions are therefore the (complex) singularities of 0 ' (w) ,  and 
these will play a central role in what follows. In section 4 we shall find that for a very 
wide class of functions X(t) and Z(t) the singularities at w= w, (cf (1)) are simple poles, 
that is 

where y is a real constant with the universality property that it depends only on the 
type of singularity and not on any associated coefficients. This universality and its 
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significance were first appreciated by Davis and Pechukas (1976) for the particular case 
of a simple zero of E2(t), where they found y= 1/3. 

M V Berry and R Lim 

From (7) and (1 l), the transition probability is 

dwc+(w)Q'(w)exp 
m 

In a first approximation to P, we use lowest-order perturbation theory, in which it is 
assumed that c+(t) preserves its initial value of unity. Then (13) depends on the singular- 
ities of Q'(w) in the lower half-plane. Assuming that there is one closest to the red 
axis (that is, ignoring the 'Stuckelberg oscillations' arising from the interference of 
singnlarities with equal Im w) ,  we use (12) to obtain 

As is well known, in this lowest-order perturbation result the prefactor z2yz is 
wrong. One way to get the right result is to iterate the equations (11) to obtain the full 
perturbation series for c- . This was done by Davis and Pechukas (1976) for a simple 
zero, and by Berry (1982) for above-bamer reflection from a turning point of arbitrary 
order. For small E all terms involve the same exponential but different (&-independent) 
multipliers, whose sum is the correct adiabatic prefactor. In what follows, we employ 
a different procedure. 

3. Superadiabatic renormalization 

As explained by Berry (1990a)-to which we refer for many details of the argument of 
this section-first-order perturbation theory fails because the quantity being calculated 
is exponentially small and therefore beyond all orders in the small parameter E. How- 
ever, first-order perturbation theory can be used if the representation (3, in terms of 
the adiabatic basis (4) is replaced by the ntb-order superadiabatic representation 

Y ' ( W )  = c.+(w) vv.*(w) + c,-(t)Y.-(w) (15) 

for sufficiently large n. Here y.* are the series solutions of (2) in powers of E ,  truncated 
at E", namely 

where the vectors u,,,.*(w) will shortly be determined. The zero-order states in this 
sequence, namely yoi, involve the adiabatic eigenvectors U+ in (4). The inkite series 
corresponding to (16) diverges, and as is well known this is associated with the existence 
of the transitions we seek to describe. 

In sections 2 and 3 of Berry (1990a) it is shown that to lowest order in E the first- 
order perturbation solution of the SchrBdinger equation satisiied by c,+(w) is 
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where T denotes the transpose. Therefore we require ti,+ ].+(w), which we 6nd by expand- 
ing in the complete set u+(w), that is 

u,.+(w) = adw)u+(w) +b,(w)u-(w) (18) 

and substituting (16) (with n= CO) into (2) .  This gives 

and the recurrence relation 

(ao(w) = 1, an>o(- 00) = 0) (20) 

Thus the first-order transition probability in the nth superadiabatic basis is 

Just as with the adiabatic basis (cf (13) with c+= I), P depends on singularities w. 
of the integrand in the lower half-plane. Therefore it is necessary to-solve (20) for the 
coefficients a, near w,, where (section 4) 8' has the form (12). Thus we must solve 

1 
a;=i[ Y2 a,, - I -ai- I - - a ~ - l ]  

4(w - w,) w- WO 
(ao(w) =1, a.,o(-m)=O) (22) 

The exact solution is 

(Regarded as an approximate solution of (20), this has fractional error of order w - w, .) 
With (23), we obtain, from (21), 

where (24) 

In the adiabatic basis n=O, the prefactor is Ao= zy,  and (24) reproduces the incor- 
rect result (14). As n increases, the prefactor renormalises onto 2 sin{ny/2), giving the 
transition probability 

~ ~ ~ ~ = 4 s i n ~ { $ 7 1 y }  exp -2- { 'Im,"' 1 
This result could also have been obtained by resumming the divergent tail of the infinite 
series corresponding to (16) (Berry 1990b). 
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4. Complex singularities 

The universal form (12) occurs when X ( t )  and Z( t )  have identical leading singularities 
at t=tc which give cancelling contributions to the energy E(t) .  A sufficiently general 
form is 

M V Berry and R Lim 

x(r) =f( t  - ro)(l + A(t - icy+. . .) 
Z(t )  = +if(t- tc)(l + B(t - tJ+ . . .) (26) 

s>o. 

Thus 

E2(t) =2[f(t-tC)l2(t - tJ (A -B+. . .) (27) 

and, from (8): 

We assume that the integral converges; there are no other restrictions on the form of 

Before proceeding, we make several remarks about this formulation. First, a simple 
zero in E‘ arises withfconstant (i.e. not singular at all) and s= 1; this case is generic 
in not requiring any conspiracy of singularities in X and 2. Second, some of the singular 
cases can be made generic by considering a family of Hamiltonians depending on several 
parameters, and varying these. Third, the cancellation of leading singularities need not 
imply that E has a zero; from (U) ,  E can be constant at t., or diverge there. 

Now we must calculate the central quantity B’(w) near the singularity w,. From (3) 

f(r). 

and (8), 

tan B = -~ - 
coszB d 8’=- - 

2 E  dt 

Substituting (26), we find 

&is 
8’= ( I + .  . .) 

4 J ~ ( t - t . ) ” 2 + y ( t - t C )  

This indeed has the form (12), with the constant given by 

whenever the limit exists. 
A class that includes all interesting Hamiltonians we know is 

f(r) = c r y 1  +. . .) (33) 
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for which 

S 
y= T 

2r + s + 2’ 

Thus the adiabatic transition probability (25) is 

Transition probabilities must be invariant under arbitrary transformatiom to new 
time variables and orthogonal transformations to new quantum reference frames, that 
is under 

t -3 t‘(t) (36Q) 

(3661 
X ( t )  X ( t )  X ( t )  cos @ + Z ( t )  sin @ 

L ( f H z . ( t )  14 -X( t )  sin 4 + Z( t )  cos q4 I 
i.e. 

e( t )+e‘( t )  0 ( t )  + @, 

In appendix A we show that (34) indeed enjoys these invariance properties. 
It should be emphasised that although (26), in which X ( t )  and Z(t )  have the same 

leading singularities at f = tc ,  generates the universal simple-pole formula (U), it rep- 
resents a class of special situations. It is not difficult to find cases where the singularity 
of 0’ is not a sin:ple pole. For example, if X ( t )  =B(t  - t.)”, Z( t )  = 1 + A(t  - f c ) ,  then 
0’-(w-wC)”)’-’ if p 20, and (w- w$-’-’”)’(”+’) if p <O, with coefficients depending 
on p. In such nonuniversal cases, the prefactor in P depends on E, and there is probably 
no simple general theory. 

5. Examples 

In the familiar Landau-Zener case, 

X u = l  z,,= t i.e. E’= 1 + Z  (37) 

The form (26) is obtained in the lower half-plane by expanding about the siraple zero 
of E’ at &= -i, and it is easy to see thatf= constant and (because Z deviates linearly 
from its value at t,) s= 1, so r=,O in (33) and (34) gives y =  1/3. Thus the prefactor is 
unity and the adiabatic transition probability is 

Next, consider the Hamiltonian HA, defined in (10). Again t,=-i, and (8) gives 
w,=-2i. Now f= l/m, so the singularity in X and 2 is a square root branch 
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point, with r=-1/2 in (33), and (because Z deviates linearly from its value at t,) s= 
1. Thus y = 1/2 and the adiabatic transition probability is 

M V Berry and R Lim 

The invariance under time reparameterisation is nicely illustrated by the transformation 

t-sinh t (40) 

xA=l ZA=sinh t i.e. EZ=cosh2 t .  (41) 

(suggested by Dr Alain Joye). This preserves the structure of (2) and gives 

Now the form (26) is obtained by expanding about the double zero of E' at tc= 
-ix/2, giving r=O in (33) and s=2. These are different values from those generated 
by the formulae in (lo), but of course refer to the same Hamiltonian HA and so generate 
the same y and the same transition probability. 
Our last example is the Hamiltonian HB,  defined in (10). Again fG= -i, and (8) gives 

w, = -2i. Now f=  sech f, so the singularity in X and Z is a simple pole, with r=  - 1 in 
(33), and (because 2 deviates quadratically from its value at t.) s=2. Thus y =  I and 
the adiabatic transition probability is 

pmB = 4 exp[ -!} . 

Each of these three Hamiltonians has a different status in adiabatic theory. HL, is 
exactly solvable, and the solution (Zener 1932) shows that the adiabatic formula (38) 
is in fact exact. HA seems to have no exact solution, and we suppose that the formula 
(39) is the first term in an adiabatic expansion in powers of E. This is supported by 
numerical exploration. (Computational solution of (2) for small E is not trivial; the 
method we employed is outlined in appendix B.) Hs does have an exact solution 

6 I 

I , 
0.5 I IS 1 ' 3  ' 3 '  2.5 ' 4  

1 / E  

Figure 1. Refactors (thick lines) multiplying the leading exponential in the transition prob- 
ability, as functions of the adiabatic parameter E, for the Hamiltonians HU (equation (36) ) ,  
if,, and H, (equation (IO)).  The LZ prefactor is exactly unity, and the A and E prefactors 
are asymptotic to 2 and 4 respectively. 
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(described by Suominen and Garraway 1992), namely 

Therefore the error is exponentially small, and results not from an adiabatic expansion 
associated with tbe singularity at wC= -2i but from contributions associated with other 
singularities (Suominen 1992). 

Figure 1 shows the exact prefactors for the three Hamiltonians as functions of E, 

indicating clearly the considerably lower accuracy of the adiabatic approximation for 
H A .  
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Appendix A 

First we show that the formula (34) for y, and hence the adiabatic transition probability 
(39 ,  is invariant under (36a), i.e. time reparameterisation. From (2) and (3), the new 
Hamiltonian involves 

Now suppose 

t - t&C (t' - t y  

The quantities in (26) and (33) rescale as 
642) 

s-s' = ps r-+r '=rp + p  - 1 643) 

Now we demonstrate the invariance' under (366), i.e. quantum orthogonal trans- 
and this leaves (34) invariant. 

formation. This changes (26) to 

X ( t )  = exp(i$} f ( t  - t,)[ 1 + (t - tc)  exp{ -$}(A cos $ + iB sin $ )] 

Z(t) = i exp{i$}f(t- tc)[l + (1- tc) exp{ -i$}(B cos $ +iA sin $ )]. 

Clearly the form of (26) is preserved, with 

(A41 

f(t-tc)-f'(t-tc) =exp{i$}f(t- tc) 

A-tA'=Acos $+iBsin $ (A5) 
B+B=Bcos$+iAsin$. 
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Appendix B 

The numcrical solution of (2) for small E, gjven a Hamiltonian specified by functions 
X ( t ) ,  Z( t )  is complicated by the fact that the desired final transition amplitude is an 
exponentially small quantity emerging from rapid oscillations that are much larger. 
This numerical instability can be reduced by solving the Schrijdinger equation not in 
the original basis, or the adiabatic basis defmed by (4) and (5 ) ,  but in one of the 
superadiabatic bases. As explained by Berry (1990a) and Lim and Berry (1991), the 
optimal basis would be the one whose order is the nearest integer to I w , ~ / E  (because in 
the nth basis the oscillations of the transition amplitude cn-(l) are of order Enil/n!). 

However, it is not necessary to use the optimal basis; in the computations with Ha 
illustrated in figure 1, only the first-order (n= 1) superadiabatic basis was employed, 
and this was dramatically superior to the ordinary adiabatic basis (n=O). 

For numerical purposes the most convenient sequence of superadiabatic bases is not 
that defined by the perturbation expansion (16) (although this is useful for theoretical 
purposes), but that generated by adiabatic iteration Berry (1987). In this procedure, 
the system is transformed to a basis specified by the eigenstates of the instantaneous 
Hamiltonian, and the process is repeated. If we define 

M V Berry and R Lim 

then with a particular choice of phases the successive Hamiltonians are determined by 

These functions can easily be found by repeated differentiation. 
It is also convenient (see also Suomiuen 1992) to solve not the Schrodinger equation 

but the equivalent real equation for the spin vector (expectation value of the vector of 
Pauli spin matrices) on the Bloch sphere. For the nth superadiabatic basis this is 

&(t) =r&) AS.@) 

r&)= {x.(t), O,zn(O}  Sm = {O,O, 11 

and we used the RungeKutta method for its numerical solution. In this formulation, 
the transition probability is 

P = f [ l  -Sn3(+c0)]. (B4) 
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